Seperti pada penggunaan RAL pada artikel sebelumnya, sebenarnya rancangan ini tidak berbeda dalam hal penggunaannya dengan RAL biasa dimana rancangan ini akan tepat apabila bahan percobaan dan kondisi percobaan anda bersifat HOMOGEN. Juga apabila jumlah perlakuan anda terbatas.
Prosedur pengacakan dan tata letak rancangan tidak berbeda dengan RAL ulangan sama, yang membedakan hanyalah jumlah ulangan yang tidak sama untuk setiap perlakuan. Untuk itu saya tidak membahas lebih lanjut bagaimana tata cata pengacakan dan tata letaknya disini dan anda dapat mempelajarinya disini.
Untuk lebih jelasnya akan saya ilustrasikan satu contoh hasil data pengamatan dari suatu percobaan berikut ini :
Analisis Ragam dalam RAL dengan ulangan yang tidak sama adalah sebagai berikut :
Rumus-rumus perhitungannya :
a) Menghitung Jumlah Kuadrat :
b) Menghitung Kuadrat Tengah :
Sebelumnya anda tentukan terlebih dahulu derajad bebas galat (db) dari masing-masing sumber keragaman sebagai berikut :
derajad bebas (db) perlakuan didapatkan dengan rumus: db perlakuan = (t – 1) = 5-1=4
derajad bebas (db) galat didapatkan dengan rumus: db galat = ∑(ni-1)= (3-1)+(3-1)+(4-1)+(2-1)+(4-1) = 11
derajad bebas (db) total didapatkan dengan rumus: db total = ∑(ni)-1=16-1=15
Kemudian baru anda hitung kuadrat tengah untuk perlakuan (KTP) dan kuadrat tengah galat (KTG) sebagai berikut :
c) Menghitung F hitung :
Dan tabel analisis ragamnya (Anova) untuk RAL dengan ulangan yang tidak sama adalah sebagai berikut :
Dari hasil analisis ragam di atas ternyata perlakuan berpengaruh sangat nyata. Dan konsekuensinya adalah kita harus melanjutkan untuk menguji perbedaan pengaruh antar perlakuan. Untuk ini saya menggunakan uji Beda Nyata Terkecil (BNT) pada taraf nyata 5%.
Dalam pengujian beda pengaruh pada perlakuan yang tidak berulangan sama, berbeda dengan pengujian beda pengaruh perlakuan yang berulangan sama. Jika masing-masing perlakuan mempunyai ulangan yang sama maka untuk semua pasangan perlakuan kita hanya memerlukan satu nilai BNT, sedangkan jika ulangan setiap perlakuan tidak sama maka setiap pasangan perlakuan membutuhkan satu nilai BNT sebagai pembanding.
Rumus BNT untuk pengujian beda pengaruh perlakuan untuk ulangan yang sama diformulasikan sbb :
Apabila anda menggunakan uji BNJ, maka formulasinya adalah :
Dan apabila anda menggunakan uji DMRT, maka formulasinya adalah :
Oke, karena saya menggunakan uji BNT maka prosedur pengujian uji BNT 5% adalah sebagai berikut :
Pertama anda tentukan nilai t-student untuk dasar pengujian berdasarkan atribut taraf nyata dan db galatnya dimana taraf nyata (α) = 5% atau 0,05 dan db galat = 11. Dari tabel t-student diperoleh nilai 2,201. Berikut saya tampilkan sebagian dari tabel t-student dimana nilai 2,201 itu diperoleh :
Langkah selanjutnya kita membandingan rata-rata perlakuan dengan cara sebagai berikut :
Susun nilai rata-rata perlakuan dari yang terkecil hingga yang terbesar sbb :
Selanjutnya kita akan membandingkan masing-masing pasangan perlakuan dengan masing-masing nilai pembanding, sbb :
a) membandingkan A vs E
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 2,64 dengan nilai rata-rata perlakuan A dimana hasilnya adalah 6,67 + 2,64 = 9,31. Dan Karena nilai 9,31 ini melebihi nilai rata-rata perlakuan E = 7,25, maka perlakuan A dan E diberi huruf yang sama (huruf a). Artinya kedua perlakuan tersebut tidak berbeda nyata pengaruhnya, berikut hasil pengujiannya :
b) membandingkan A vs C
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 2,64 dengan nilai rata-rata perlakuan A dimana hasilnya adalah 6,67 + 2,64 = 9,31. Dan Karena nilai 9,31 ini kurang dari nilai rata-rata perlakuan C = 9,50, maka perlakuan A dan E berbeda nyata pengaruhnya, dan diberi huruf yang berbeda sbb :
c) membandingkan E vs C
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
=Selanjutnya anda jumlahkan nilai BNT 5% = 2,44 dengan nilai rata-rata perlakuan E dimana hasilnya adalah 7,25 + 2,44 = 9,69. Dan Karena nilai 9,69 ini melebihi nilai rata-rata perlakuan C = 9,50, maka perlakuan E dan C diberi huruf yang sama (huruf b). Artinya kedua perlakuan tersebut tidak berbeda nyata pengaruhnya, berikut hasil pengujiannya :
d) membandingkan E vs B
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 2,64 dengan nilai rata-rata perlakuan E dimana hasilnya adalah 7,25 + 2,64 = 9,89. Dan Karena nilai 9,89 ini kurang dari nilai rata-rata perlakuan B = 10,33, maka perlakuan E dan B berbeda nyata pengaruhnya, dan diberi huruf yang berbeda sbb :
e) membandingkan C vs B
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 2,64 dengan nilai rata-rata perlakuan C = 9,50 dimana hasilnya adalah 9,50 + 2,64 = 12,14. Dan Karena nilai 12,14 ini melebihi nilai rata-rata perlakuan B = 10,33, maka perlakuan C dan B diberi huruf yang sama (huruf c). Artinya kedua perlakuan tersebut tidak berbeda nyata pengaruhnya, berikut hasil pengujiannya :
f) membandingkan C vs D
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 2,99 dengan nilai rata-rata perlakuan C dimana hasilnya adalah 9,50 + 2,99 = 12,49. Dan Karena nilai 12,49 ini kurang dari nilai rata-rata perlakuan D = 13,00, maka perlakuan C dan D berbeda nyata pengaruhnya, dan diberi huruf yang berbeda sbb :
g) membandingkan B vs D
Hitung nilai BNT 5% sebagai pembandingnya dengan rumus berikut :
Selanjutnya anda jumlahkan nilai BNT 5% = 3,15 dengan nilai rata-rata perlakuan B = 10,33 dimana hasilnya adalah 10,33 + 3,15 = 13,48. Dan Karena nilai 13,48 ini melebihi nilai rata-rata perlakuan D = 13,00, maka perlakuan B dan D diberi huruf yang sama (huruf d). Artinya kedua perlakuan tersebut tidak berbeda nyata pengaruhnya, berikut hasil pengujiannya :
Karena perhitungan pembandingan nilai rata-rata telah sampai pada nilai rata-rata terakhir, maka selesailah perhitungan pembandingannya dan hasil akhir dari semua pengujian di atas adalah sebagai berikut :
atau apabila kita susun kembali perlakuannya menjadi sebagai berikut :
Selesai, semoga bermanfaat.
Rancangan Acak Lengkap ( RAL ) dengan ulangan tidak sama
Sabtu, 10 Desember 2011
Diposting oleh
Natasya Mayang Asmara
di
22.50
Kirimkan Ini lewat Email
BlogThis!
Bagikan ke X
Berbagi ke Facebook
Langganan:
Posting Komentar (Atom)
2 komentar:
Maaf lain kali sumber artikelnya dicantumkan ya. Terima kasih..
maksudnya n1 dan n2 di rumus uji bnt itu apa ya? tolong dijelaskan. terima kasih
Posting Komentar